
IM-POST-XXXXX

tid.llnl.gov/print

Views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, the Remote Sensing Laboratory, or the
Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

DE-AC52 07NA27344. Lawrence Livermore National Security, LLC

ADAPT

Future Work

• We know that running mixed-precision on GPUs will lead to
speedups on more codes than currently seen.

• ADAPT cannot currently instrument entire HPC codes at once,
to address this, we could determine critical points or conduct
multiple passes with varying sets of inputs.

• Continue exploring alternative search strategies for CRAFT in an
attempt to reduce analysis time. Possibly implement a machine
learning algorithm to narrow the search space.

Search Space Reduction

Acknowledgements

This work has been supported by the LLNL-LDRD Program under
Project No. 17-SI-004. The authors would also like to thank Jeff
A.F. Hittinger for his support throughout this project.

Logan Moody, Nathan Pinnow, Michael O. Lam, Harshitha Menon, Markus Schordan, G. Scott Lloyd, Tanzima Islam

Automatic Generation of Mixed-Precision Programs

Pipeline

Solution

Goal: Automatically produce a mixed-precision version using 64
and 32 bit variable sizes depending on the level of accuracy
needed.

Fraction (52 bits)Exponent (11 bits)

Double

Sign (1 bit)

Fraction (23 bits)Exponent (8 bits)

Single

Sign (1 bit)

Method

We propose an automated pipeline using the the following tools
to generate a mixed-precision version of a provided program.

• TypeForge, a ROSE Compiler tool, produces modified source
code and provides information about the program.

• ADAPT analyses variables to refine the search space.

• CRAFT uses the search space and modified source to test
configurations and determines the optimal precision mixture.

TypeForgeBenefits:

• Minimal development time spent optimizing program

• Provide modified source code to the user

• Maintains specified level of accuracy

• Minimize runtime of the program

Initial Configuration:

• Generate list of possible replacements with unique
identifiers based on variable declaration.

• Locate all assignments to a floating-point variables
and inserts ADAPT instrumentation to instrument
variable.

• Replace floating-point types with AD_real types for
ADAPT tracking.

• Output modified source code with ADAPT
instrumentation included.

Right Hand SideLeft Hand Side

Floating Point Type

Root

AssignmentStatement StatementInstrumentation

AD_real Type

• Using ADAPT to inform the delta debugging search can
reduce the search space.

• The use of ADAPT on a small, trivial program will likely run
slower due to the overhead of the AD analysis

Abstract

• HPC applications use floating point operations extensively and
computer architecture supports multiple levels of precision.

• Higher precision improves accuracy.

• Lower precision improves performance.

Motivation

LLNL-POST-756004
This work was performed under auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

under contract DE-AC52-07NA27344.

Original
Source Code

TypeForge

List Variables

ADAPT

Analyze Variables and
Calculate Adjoints

CRAFT

Search and Verify
Configurations

Mixed-Precision
Source Code

Adjoints (JSON)

List of Variables (JSON)

AD code
Annotations

Verification
Routine

TypeForge

Generate
Configurations

TypeForge

Insert
Annotations

Configuration (JSON)

Modified Source Code

Error
Threshold

Example AST
subtree with type

change and
instrumentation.

References

1. Michael O. Lam and J.K. Hollingsworth. 2016. Fine-Grained Floating-Point Precision Analysis.
International Journal of High Performance Computing Applications (jun 2016).

2. Harshitha Menon, Michael O. Lam, Daniel Osei-Kuffuor, Markus Schordan, Scott Lloyd, Kathryn
Mohror, and Jeff Hittinger. (in press) 2018. ADAPT: Algorithmic Differentiation for Floating-Point
Precision Tuning. In The International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC’18).

3. Dan Quinlan. 2000. ROSE: Compiler Support for Object-Oriented Frameworks. Parallel Processing
Letters 10 (2000), 215–226.

SUM2PI FFT EP

7 25 63

7 24 56

0.01s 2.01s 2.86s

Combinational 127 3.36E+07 7.21E+16

Delta Debugging 22 11 222

ADAPT + Delta Debugging 11 11 -

Combinational 1:52 - -

Delta Debugging 1:41 2:43 34:54

ADAPT + Delta Debugging 2:31 3:16 -

Combinational 1.0x - -

Delta Debugging 1.0x 1.2x 1.0x

ADAPT + Delta Debugging 1.0x 1.2x -

0.01s 1.69s 2.86sFinal Optimized Runtime

Configurations

For Testing

Benchmarks

Floating-point Variables

Pipeline

Runtime

(mm:ss)

Largest

Speedup Found

Original Runtime

Candidates

Results

• The user provides the original source code, verification routine, and an error threshold,
then the pipeline will produce a mixed-precision version of the source.

• A JSON data interchange format was designed to facilitate communication between the
tools and to allow for easy extensions in the future.

If you would like to learn more about
the tool pipeline, scan the QR code

below.

CRAFT

• Calculates the numerical derivative of
a function using reverse automatic
differentiation

• A reverse pass calculates the impact
on one output by all the inputs

• Stores all intermediate numerical
values

• With this information ADAPT is able
to determine which variables in a
program are more likely to need
higher precision.

1

1

2

2

2

2

3
4

5

6

Generate Mixed-Precision:

• Takes specifications from CRAFT to generate a test
configuration.

• Output final mixed-precision source code for the user.

4

6

• Generate configurations of variables for
TypeForge, which will produce the mixed-
precision program.

• Test the new mixed-precision program to
determine if the required error tolerance was
maintained and if a speedup was achieved.

The CRAFT tool has also been expanded to include different search
strategies which allows it to narrow down the search space, and reduce
analysis time.

5

4

3

Provided by user
Generated by tools

Original:
double precise = 1.00000003;
double loose = 0.00000003;
double output = precise + loose;
printf("output: %.8g\n", output);

Output: 1.0000001

Uniform single:
float precise = 1.00000003;
float loose = 0.00000003;
float output = precise + loose;
printf("output: %.8g\n", output);

Output: 1

Mixed-precision:
double precise = 1.00000003;
float loose = 0.00000003;
float output = precise + loose;
printf("output: %.8g\n", output);

Output: 1.0000001

