

Logan Moody, Nathan Pinnow, Michael O. Lam, Harshitha Menon, Markus Schordan, G. Scott Lloyd, Tanzima Islam

Motivation						
 HPC applications use floating point operations extensively and computer architecture supports multiple levels of precision. Higher precision improves accuracy. Lower precision improves performance. 						
Single	Sign (1 bit) Exponent (8 bits) Fraction (23 bits)					
Double	Sign (1 bit) Exponent (11 bits) Fraction (52 bits)					

Solution

Goal: Automatically produce a mixed-precision version using 64 and 32 bit variable sizes depending on the level of accuracy needed.

Benefits:

- Minimal development time spent optimizing program
- Provide modified source code to the user
- Maintains specified level of accuracy
- Minimize runtime of the program

Method

We propose an automated pipeline using the the following tools to generate a mixed-precision version of a provided program.

- TypeForge, a ROSE Compiler tool, produces modified source code and provides information about the program.
- ADAPT analyses variables to refine the search space.
- CRAFT uses the search space and modified source to test configurations and determines the optimal precision mixture.

Automatic Generation of Mixed-Precision Programs

Results					
Benchmarks		SUM2PI	FFT	EP	
loating-point Variables		7	25	63	
Candidates		7	24	56	
Original Runtime		0.01s	2.01s	2.86s	
tions ing	Combinational	127	3.36E+07	7.21E+16	
	Delta Debugging	22	11	222	
	ADAPT + Delta Debugging	11	11	-	
ne s)	Combinational	1:52	-	-	
	Delta Debugging	1:41	2:43	34:54	
	ADAPT + Delta Debugging	2:31	3:16	-	
st ound	Combinational	1.0x	-	-	
	Delta Debugging	1.0x	1.2x	1.0x	
	ADAPT + Delta Debugging	1.0x	1.2x	-	
inal Optimized Runtime		0.01s	1.69s	2.86s	

• Using ADAPT to inform the delta debugging search can reduce the search space.

• The use of ADAPT on a small, trivial program will likely run slower due to the overhead of the AD analysis

Future Work

• We know that running mixed-precision on GPUs will lead to speedups on more codes than currently seen.

• ADAPT cannot currently instrument entire HPC codes at once, to address this, we could determine critical points or conduct multiple passes with varying sets of inputs.

• Continue exploring alternative search strategies for CRAFT in an attempt to reduce analysis time. Possibly implement a machine learning algorithm to narrow the search space.

Acknowledgements

This work has been supported by the LLNL-LDRD Program under Project No. 17-SI-004. The authors would also like to thank Jeff A.F. Hittinger for his support throughout this project.

References

.. Michael O. Lam and J.K. Hollingsworth. 2016. Fine-Grained Floating-Point Precision Analysis. International Journal of High Performance Computing Applications (jun 2016).

. Harshitha Menon, Michael O. Lam, Daniel Osei-Kuffuor, Markus Schordan, Scott Lloyd, Kathryn Mohror, and Jeff Hittinger. (in press) 2018. ADAPT: Algorithmic Differentiation for Floating-Point Precision Tuning. In The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'18).

Dan Quinlan. 2000. ROSE: Compiler Support for Object-Oriented Frameworks. Parallel Processing Letters 10 (2000), 215–226.

This work was performed under auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.