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ABSTRACT
Floating-point arithmetic is foundational to scientific computing
in HPC, and choices about floating-point precision can have a sig-
nificant effect on the accuracy and speed of HPC codes. Unfor-
tunately, current precision optimization tools require significant
user interaction and few work on the scale of HPC codes due to
significant analysis overhead. We propose an automatic search and
replacement system that finds the maximum speedup using mixed
precision given a required level of accuracy. To achieve this, we
integrated three existing analysis tools into a system that requires
minimal input from the user. If a speedup is found, our system can
provide a ready-to-compile mixed-precision version of the original
program.
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• Software and its engineering → Dynamic analysis; Software
notations and tools; Software verification and validation; Source code
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1 INTRODUCTION
IEEE floating-point arithmetic is ubiquitous in scientific comput-
ing, providing different levels of precision (e.g., single or double
precision). Lower precisions can improve speed, reduce memory
bandwidth, and lower energy consumption. However, it is often dif-
ficult to determine when single precision floating point can be used
over double precision, so a common practice is to use double pre-
cision exclusively. Although the difference in runtime is marginal
on everyday programs, HPC codes can experience a significant
speedup.

Unfortunately, current floating-point precision analysis and opti-
mization tools require significant user interaction and most do not
scale to HPC workloads. Determining which variables can be con-
verted to single precision while maintaining the required accuracy
is difficult or impractical on HPC codes when using a search-based
approach because of the enormous search space (the power set of
all variables). An additional challenge is determining if a particular
mixed-precision configuration actually realizes a speedup because
of the added overhead of inserting cast operations.

We propose an automated pipeline that given source code will
produce optimized mixed-precision source that maintains a pro-
vided level of accuracy. In order to achieve this we use the Rose
compiler framework [4] tool TypeForge for source-to-source trans-
lation, ADAPT [3] to narrow the search space of configurations,
and CRAFT [1, 2] to perform the search and verify the result.

2 CONTRIBUTIONS
The posters pipeline diagram shows an overview of our system.
The user provides as input the original source code, a verification
routine, and an error threshold. After analysis, our system will pro-
duce a mixed-precision version of the source. TypeForge extracts
source code information that the other tools need, ADAPT calcu-
lates adjoints for each variable and suggests a mixed-precision con-
figuration, and CRAFT uses the output of TypeForge and ADAPT
to search for an optimal configuration. CRAFT further uses Type-
Forge to generate mixed-precision configurations for compilation
and testing.
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2.1 TypeForge
TypeForge serves as a source code manipulation and search tool
for other stages of the pipeline.

In the initial configuration stage, TypeForge generates a list
of possible variable replacement candidates for the CRAFT tool
while also generating unique handles for every variable to facilitate
communication between all stages of the pipeline.

To enable theADAPT analysis stage, TypeForge converts floating-
point variables to an AD_real type and inserts calls to the ADAPT
library. ADAPT uses operator overloading to perform algorithmic
differentiation whenever an AD_real variable is assigned to. Pre-
viously, ADAPT instrumentation and type replacement had to be
added manually by a developer.

During the search stage, CRAFT searches for the optimum con-
figuration based on ADAPT results. CRAFT uses TypeForge to
generate and compile new source code with the converted types.

2.2 ADAPT
ADAPT [3] is a tool that analyzes a program to identify critical vari-
ables using a technique called automatic differentiation. Automatic
differentiation is used to calculate the numerical derivative of a
computer program. ADAPT conducts a reverse pass of the AD tree
to calculate the sensitivity of the output with respect to all inputs
and intermediate variables. With this information ADAPT is able
to determine which variables in a program are more likely to need
higher precision. CRAFT uses this list of variables along with the
calculated error information to reduce search time.

2.3 CRAFT
CRAFT [2] searches a given set of variables to find amixed-precision
configuration thatminimizes runtimewhile passing a user-provided
verification routine. Originally, CRAFT worked at the binary ma-
chine code instruction level and could not guarantee a speedup
because it lacked the ability to incorporate optimizations such as
vectorization. For our system, we enhanced CRAFT to conduct a
search on source-code variables instead of machine code instruc-
tions. CRAFT is now able to find a mixed-precision speedup (if one
exists) and provide compilable source code for the final configura-
tion. CRAFT uses TypeForge to perform source code transforma-
tions.

We have also added new search strategies to CRAFT in an at-
tempt to speed up configuration searching. The original binary
hierarchical search strategy is no longer applicable to source-level
searching, and the original combinational strategy was an exhaus-
tive search, testing all possible configurations 2n − 1 for n variables
and taking far too much time for any non-trivial code.

A new compositional search replaces every variable individually
and then attempts to build better configurations using compositions
of already-passing configurations. The compositional search avoids
large areas of the search space dominated by variables that cannot
be replaced, providing results that are globally optimal using less
analysis time.

Finally, a delta-debugging search was implemented based on the
algorithm used by Precimonious [5]. This strategy uses a binary
search approach to search an asymptotically smaller space than

either of the other approaches, however it is not guaranteed to find
the global optimum.

2.4 JSON Interchange Format
To facilitate communication between the three tools, we designed a
JSON-based format for describing tool actions and integrated it into
all three tools. For the tools written in C++, we wrote a wrapper
class to make reading and writing from the files seamless. This
made communicating between the three tolls much simpler and
will allow for easy expansion of the pipeline in the future.

3 CONCLUSIONS
The pipeline we have created is capable of generating source code
that will improve performance. Results on the GSL benchmark FFT
show that our pipeline will generate a 1.2x speedup. Currently this
pipeline is set up to run on CPUs and we believe that running
mixed precision on GPUs will lead to even larger speedups. The
pipeline could be further improved by exploring alternative search
strategies for CRAFT in an attempt to reduce analysis time. We also
conjecture that the integration of a performance analysis model
would allow CRAFT to avoid executing program variants, removing
much of the analysis overhead.
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